Case Report:

A Rare Case Report of Class1 Pentalogy of Cantrell

Abed Gulab Nagure, Kala K, Rathipriya, Jayashree A K, Deepshikha Jha

Department Of OBGY
Name of the institute; M V J Medical College & Research Hospital, Hoskote Bangalore, India
Corresponding author : Dr . Abed Gulab Nagure ; email id: abednagure007@gmail.com

ABSTRACT
The pentalogy of Cantrell is an extremely rare congenital anomaly. The complexity of this syndrome is usually incompatible with life, so the exact incidence could not be found in the literature; however, an incidence of 1:100000 births, with a male preponderance (M:F = 2:1.2), has been described in literature in developed countries. Cantrell’s pentalogy with ectopia cordis is an extremely rare and lethal congenital anomaly. We discuss the case and present a brief review of literature of embryogenesis.

Keywords: Abdominal wall defect, Cantrell’s pentalogy, Ectopia cordis

INTRODUCTION
The pentalogy of Cantrell was first described in 1958.1 The hallmark of this syndrome is an association with ectopia cordis (EC). The full spectrum consists of five anomalies: A deficiency of the anterior diaphragm, a midline supra-umbilical abdominal wall defect, a defect in the diaphragmatic pericardium, various congenital intracardiac abnormalities and a defect of the lower sternum. Only a few patients with the full spectrum of the pentalogy have been described. We reviewed the literature to find prognostic factors that may help to assess the best multidisciplinary approach in prenatal counseling and in postnatal therapy in patients with the pentalogy of Cantrell.

CASE REPORT
Mrs X came to attend OPD of our hospital for routine antenatal checkup with 4 ½ months amenorrhea. She was taking iron and folic acid prophylaxis. 1st trimester was uneventful. No history of any teratogenic drug intake, No history of exposure to radiation .Had taken folic acid, No history of consanguinity. On the day examination, her POG was 19wks. Her routine investigations were normal. GTT was normal. On per abdomen examination, uterus was not palpable so patient was subjected for USG examination. USG showed single live intrauterine pregnancy POG 11wks 3 days, Nuchal Translucency thickness of 4.0 mm with diffuse foetal subcutaneous oedema. Large 1.1 cm x 1 cm high abdominal omphalocele seen. Omphalocele contents included liver, cardia, gut loops and partially the stomach. Cord is inserted on the apex of the omphalocele, situs solitus noted. Overall the findings were suggestive of pentalogy of Cantrell. Decision for termination of pregnancy was taken and induction was done with misoprost tablet. She aborted completely. A female fetus was having anterior abdominal wall defect above umbilicus through which liver, stomach and gut loops were herniating. Thorax was hypoplastic with heart protruding through a sternal defect. External genitalia were normal. Postabortion period was uneventful and she was discharged next day in a good condition.
DISCUSSION

The pentalogy of Cantrell is an extremely rare congenital anomaly. The complexity of this syndrome is usually incompatible with life, so the exact incidence could not be found in the literature; however, an incidence of 1:100000 births, with a male preponderance (M:F = 2:1.2), has been described in literature in developed countries. Cantrell, Haller and Ravitch, in 1958, were the first to describe this syndrome. Displacement or evagination of the heart through the abdominothoracic wall defect is called ectopia cordis. Depending on the location of the protruding heart and on the extent of the body wall defect, ectopia cordis may be grouped into cervical, thoracic, thoracoabdominal or abdominal types. The heart was uncovered in 41%, covered with a serous membrane in 31% and covered with skin in 27% of reported cases. In thoracoabdominal ectopia, as in our case, the body wall usually remains unclosed up to the umbilicus. The diaphragm has a V-shaped hiatus. The anterior and inferior portion of the pericardium may be absent. The heart itself may be congenitally abnormal as well as displaced. The entire group of anomalies would appear to be closely related in embryologic development, arising as the result of defective formation and differentiation of the ventral mesoderm at about 14 to 18 days of embryonic life. On the basis of embryological development, this syndrome may be classified into two groups. The first group arises as the result of developmental failure of a segment of the mesoderm and comprises three of the defects, i.e. diaphragmatic defect (which results from total or partial failure of the transverse septum to develop); pericardial defect (which is closely related to faulty development of the transverse septum); and intracardiac lesions (which is the result of faulty development of the epimyocardium, which is derived from the splanchnic mesoderm). The second group includes the sternal and abdominal wall defect and appears to arise due to failure of migration of the paired primordial structures. Many variants of Cantrell’s pentalogy have been described according to the postulated embryological development of these defects; these various types may be classified as follows:

Class 1: Exact diagnosis, with the five defects present
Class 2: Probable diagnosis, with four defects (including intracardiac and abdominal wall defects) present
Class 3: Incomplete diagnosis, with combination in the defects (always accompanied by sternal defect).

The occurrence of congenital intracardiac anomalies is a constant element of this syndrome; a ventricular septal defect was present in every instance in which a description of the heart was available, and was also found in our case. Other intracardiac anomalies that are seen include atrial septal defect (53%), valvular or infundibular pulmonary stenosis (33%), tetralogy of Fallot (20%), left ventricular diverticulum (20%), etc. With the increasing use of antenatal diagnostic tools, these anomalies can be diagnosed before birth (Image: 1 and 2.) With prenatal ultrasonography, the pentalogy of Cantrell usually can be diagnosed in the first trimester of pregnancy. In a fetus with omphalocele, pentalogy of Cantrell should be ruled out. If pericardial effusion can be seen, associated anterior diaphragmatic hernia and diaphragmatic pericardial defects may be suspected and specific and detailed search for the features of the pentalogy of Cantrell should be done. Use of prenatal magnetic resonance imaging...
(MRI) may enhance the visualization of the fetal anomalies. Although most cases of the ectopia cordis appear as isolated, sporadic defects, other associated anomalies, including chromosomal abnormalities (trisomy 18) are reported in literature. Carmi et al described cleft lip, with or without cleft palate, and encephalocele associated with ventral midline anomalies within the spectrum of Cantrell’s pentalogy as a subunit of the midline developmental anomalies. In our case, cytogenetic analysis was not performed as the patient was not willing.

Treatment should consist of immediate surgical repair (except for the intracardiac abnormalities); some cases that had successful surgical correction have been mentioned in literature. The prognosis in cases of ectopia cordis is much worse, with cases of thoracoabdominal ectopia showing slightly better prognosis than the other ectopias. In our case, the fetus had thoracoabdominal ectopia cordis with Cantrell’s pentalogy and therefore, she belongs to class 1 of the embryological classification.

Abortus Image; 3

![Image 1](omphalocele sac with liver)

![Image 2](sternal defect with ectopia cordis and loops of intestine)

![Image 3](Liver loops of intestine sternal defect with ectopia cordis)
CONCLUSION
Cantrell’s pentalogy with ectopia cordis is a lethal anomaly and prompt medical and surgical interventions are required immediately after birth without which death is the rule. Even after proper surgical interventions, the prognosis is not good.

REFERENCES