“Effectiveness of General Quadriceps strengthening versus selective Vastus Medialis Obliquus strengthening in Patellofemoral Pain Syndrome.”

Dr. Leena D. Chaudhari,* Dr. Keerthi Rao
College Of Physiotherapy ,Pravara Institute Of Medical Sciences, Loni.

Corresponding Author: Dr. Leena D. Chaudhari , Postgraduate student, College of Physiotheraphy, PIMS,Loni. Contact no.9049913244.

INTRODUCTION:
Patellofemoral pain syndrome (PFPS) is a highly prevalent musculoskeletal overuse condition that has a significant impact on participation in daily and physical activities. Though it is a common musculoskeletal condition it is difficult to manage. A recent retrospective view of running injuries found PFPS to be the most common presentation to a sports medicine clinic in both females (19.2% of injuries) and males (13.4% of injuries). The etiology of patellofemoral pain syndrome may be multifactorial. Causes include overuse/overload, biomechanical problems and muscular dysfunction.
PFPS is often used interchangeably with other terms, such as patellofemoral pain (or stress) syndrome, patellofemoral dysfunction or anterior knee pain. PFPS here describes patients who have pain over the anterior aspect of the knee that typically occurs with activity like stair climbing, squatting, walking, running which often worsens when they are descending steps or hills.

Generally strengthening the quadriceps musculature is the widely used treatment for PFPS, but one theory states that, if the force generated by the VMO is essential for proper patella tracking, then general quadriceps femoris strengthening, especially closed chain exercises, will bring the VMO up to a ‘threshold’ necessary for optimal tracking. Hence there is debate as to whether rehabilitation should be based on exercises strengthening the quadriceps femoris muscle group or specifically targeting the vastus medialis oblique (VMO).

The study presented here aims to compare the general quadriceps strengthening approach with a selective VMO strengthening approach in the management of PFPS.

Method:

Ten subjects including both males and females were selected between age group of 18 to 60 years who are willing to participate in the study. They met the criteria that at least three diagnostic tests are positive out of five on clinical examination. The subjects were briefed about the study, the intervention and a written consent was obtained.

Before and after the intervention, Pain (Visual analogue scale), Range of motion (Universal Goniometer), Function (Knee Functional score), Strength (Pressure Biofeedback) were measured. Subjects were divided into group A and B which consisted of 5 patients each by convenient sampling.

Group A was given general quadriceps strengthening (subjects were instructed to keep a shoulder-width distance between feet and then bend both the knees and go down smoothly and come back up. They could increase the intensity of this exercise by carrying dumbbells in hands in accordance to Delorme Regimen(1945) by calculating 10 RM for each subject. 1RM is the greatest amount of weight a subject could lift throughout the full ROM just 1 time and amount of weight that could be lifted and lowered just 10 times is 10 RM. Delorme proposed and studied the use of 3 sets of 10 RM with progressive loading during each set (Photograph no.1).

Group B was given selective VMO strengthening (subjects were instructed to do double
Leg squat with isometric hip adduction exercise by placing one ball between both the knees to maintain hip adduction and distance between both the knees and another ball between wall and back of the patient for smooth movement. Then the subject was instructed to bend both the knees and go down smoothly and come back up. The subject could increase the intensity of this exercise by carrying dumbbells in hands in accordance to Delorme Regimen (1945) by calculating 10 RM for each patient. (Photograph no.2)

Ultrasound Therapy was common for both the groups (Subjects were in supine lying position, knee slightly flexed with support below the knee, continuous ultrasonic waves of 1 MHz frequency and 1.5 W/cm² power was applied with a 5-cm diameter applicator (Sonopulse 434; Enraf Nonius, Delft, The Netherlands) for 5 min per session over the anterior knee after the exercises were administered.

Pre and post treatment strength was measured with Stabilizer™ (Pressure Biofeedback, Chattanooga Group, Inc., USA), Pain on Visual Analogue Scale, Range of Motion with Universal Goniometer, Functional activity with Knee Functional Scale. (Reliability and Validity of all instruments are evaluated.) (Photograph no.3)
RESULTS:
Graph 1 shows that VMO strengthening demonstrated statistically significant increase in strength of Group B (p<0.05) as compared to Group A. Graph 2 states that Group B shows statistically significant difference as compared to Group A (p<0.05) in terms of Knee functional score. While there was no statistically significant difference in terms of Range of motion (Graph 3), yet a statistically significant difference between pre and post intervention ranges was noticed. However, it revealed that there was reduction in pain on Visual analogue scale of Pre and post intervention scores (Graph 4).

DISCUSSION:
This study demonstrated that both general quadriceps strengthening and VMO strengthening reduced pain and improved range of motion, but that there was no difference between the approaches while VMO strengthening plays significant role in improvement of strength and functional activities and participation. The conclusions supported previous work, which demonstrated minimal added value of selective VMO training in improving pain and function.

Several RCTs investigating PFPS have examined the benefit of selective activation of the VMO by comparing conventional open and closed kinetic chain exercise programs with and without electromyography biofeedback have reported no additional clinical improvement between the groups at three-month follow-up.11
The inclusion of VMO strengthening exercises in the initial stages of the rehabilitation process merely reflects first stage of a program of ‘quadriceps femoris’ strengthening. Furthermore, Powers suggested that optimising lower limb alignment of the femur relative to the patella, by enhancing pelvic and femoral control, may be as pertinent as focusing on rehabilitating muscles that directly control the patella.

CONCLUSION:

The study demonstrated that physiotherapy involving either selective VMO strengthening exercises or a general quadriceps femoris strengthening program reduced pain, improved Range of motion, but selective VMO strengthening is most likely to be given to improve strength and functional activities of day today life in PFPS patients.

ACKNOWLEDGEMENT:

We thank Dr. Subhash Khatri, Principal of College of Physiotherapy and all the staff, Pravara Institute Of Medical Sciences, Loni for their support.

We are indebted to our patients without whom this study could not be conducted.

REFERENCES:

This original research work was conducted in college of Physiotherapy, PIMS,Loni, Tal .Rahata, Dist.Ahmednager, Maharastra, India, Pin-413736 by Dr.Leena Choudhari with Dr.Kirthi Rao.

Date of manuscript submission: 24 October 2011
Date of initial approval: 3 November 2011
Date of Peer review approval: 21 November 2011
Date of final draft preparation : 28 November 2011
Date of Publication: 2 December 2011
Conflict of Interest: Nil, Source of Support: Nil .

www.ijbamr.com