Correlation of Lipid level in Thyroid Disorder Patients: A Case Control Study

Dr. Arohi Kumar

Associate Professor, Department of General Medicine, Narayan Medical College & Hospital, Sasaram, Bihar, India.

Corresponding Author:
Dr. Arohi Kumar, Associate Professor, Department of General Medicine, Narayan Medical College & Hospital, Sasaram, Bihar, India.

Abstract
Background: Hypothyroidism is related with many biochemical abnormalities. Increased levels of total cholesterol and low density lipoprotein cholesterol, when decreases thyroid function. So, we have designed this study in our population for evaluation of lipid profile in hypothyroid patients that might be helpful for clinical management of hypothyroid patients with dyslipidemia.

Material & Methods: The present a Case Control Study done on 80 patients were attending both OPD and IPD in Department of Medicine, Narayan Medical College & Hospital, Sasaram, Bihar, India. Presence of thyroid dysfunction is defined as per American Thyroid Associations Guidelines and dyslipidemia as per NCEP ATP II and IDF Guidelines.

Results: In our study showed that the majority of patients were 62.5% in case group and 60% in control group was 30-60 years of age (table 1). The mean value of TSH, Total T3 & Total T4 was 9.423±3.944, 123.7±36.12 & 7.106±4.136 respectively in case group and 2.54±0.8180, 133.5±22.03 & 9.019±1.527 respectively in control group, but statistically significant (P<0.0001, P=0.0287 & p=0.1002 respectively). The lipid profile (TC, LDL, HDL, VLDL & TG) was statistically significant (P<0.0001, P=0.0001, P=0.425, P<0.0001 & P=0.0001 respectively).

Conclusion: So it can be concluded that patients with thyroid disorder did have a marked impact on lipids fractions like total cholesterol, LDL-C, HDL-C levels, triglyceride and VLDL-C in patients with subclinical hypothyroidism suggested that subclinical hypothyroidism might be associated with increased risk of some amount of cardiovascular risk that could be improved on giving L-thyroxine.

KeyWords: Thyroid disorder, HDL, LDL, TC, VLDL, TG.

INTRODUCTION
Hypothyroidism is a clinical syndrome resulting from a deficiency of thyroid hormones, these hormones regulates a wide array of metabolic activities. It is a common metabolic disorder in general population, which is more common in women and epidemiological rate of prevalence increase with age. Thyroid disorders are more prevalent in women as compare to men and can cause many problems including weight gain and hormonal imbalance. In the developed countries, the prevalence of thyroid disorders is about 4% to 5%.

Hypothyroidism is related with many biochemical abnormalities. Increased levels of total cholesterol and low density lipoprotein cholesterol, when decreases thyroid function. Thus hypothyroidism comprises a significant cause of secondary dyslipidemia.

The generally increase the serum total cholesterol level (raised serum LDL cholesterol and
intermediate density lipoprotein) in hypothyroidism patients, despite the decreased activity of HMG CoA reductase. Decline the thyroid hormone secretion greatly raises the plasma concentration of cholesterol because the decline rate of cholesterol secretion in the bile and consequent reduced loss in the feces due to decreased number of low density lipoprotein receptors on liver cells. Reduced activity of LDL receptors resulting in decline receptor-mediated catabolism of LDL and IDL is the main cause of the hypercholesterolemia found in hypothyroidism.

In newly diagnosed hypothyroid patients (value more than 40 mg/dL) reported increases concentration of high density lipoprotein cholesterol in serum, whereas euthyroid and previously reported hypothyroid cases who were on thyroid replacement therapy reported decreased level of serum HDL cholesterol. Hypothyroid patients usually manifest elevated levels of high density lipoprotein cholesterol (HDL-C) mainly due to raise concentration of HDL2 particles.

Various studies were done to evaluate the lipid profile status of hypothyroid patients. But controversies still overcome and that needs to attain consensus. So, we have designed this study in our population for evaluation of lipid profile in hypothyroid patients that might be helpful for clinical management of hypothyroid patients with dyslipidemia.

MATERIAL & METHODS

The present a Case Control Study done on 80 patients were attending both OPD and IPD in Department of Medicine, Narayan Medical College & Hospital, Sasaram, Bihar, India.

Inclusion criteria

- All the patients with thyroid dysfunction

Exclusion criteria

- Patients with chronic liver disease.
- Patients who had already taken treatment.
- Coagulation disorders.
- Severe systemic disease.
- Pregnancy.
- Renal failure
- Malignancy
- Underlying known cardiac disorder

Presence of thyroid dysfunction is defined as per American Thyroid Associations Guidelines. Dyslipidemia as per NCEP ATP II and IDF Guidelines:

- Total cholesterol>200mg/dl
- Triglyceride>150mg/dl
- HDL<40 mg/dl
- LDL>100 mg/dl

Data Analysis

Statistical analysis of the data’s was done by SPSS where the values ≤ 0.05 was considered as significant.

RESULTS

In our study showed that the majority of patients were 62.5% in case group and 60% in control group was 30-60 years of age (table 1). The mean value of TSH, Total T3 & Total T4 was 9.423±3.944, 123.7±36.12 & 7.106±4.136 respectively in case group and 2.54±0.8180, 133.5±22.03 & 9.019±1.527 respectively in control group, but statistically significant (P<0.0001, P=0.0287 & p=0.1002 respectively) (table 2).

In our results suggested that the lipid profile was statistically significant showed in table 3. 2-D echo positive in 55% in case group and none of patients in control group (table 4).
DISCUSSION

In the present study, we observed a statistically significant the levels of lipid profile in thyroid disorder with respect to control subjects. Dyslipidemia is a well-known risk factor for cardiovascular diseases like atherosclerosis.

The correlation between changes in lipid profile and overt hypothyroidism is well established. However, lipid profile alterations in subclinical hypothyroidism are controversial; some studies showing positive correlation and prompt reversal of changes following treatment (Atthans et al., 1988 and Monzani et al., 2004) and few studies refusing any correlation between the two (Houston and Pearson, 2004). The results of the present study contrasts previous study in which it was observed that subclinical hypothyroidism was associated with raised LDL-C levels and thus had larger cardiovascular risk (Bakker et al., 2001). Literature reporting hypercholesterolemia to be more common condition in cases with subclinical hypothyroidism may simply reflects that hypercholesterolemia is a common condition in general population. A significant increase in serum triglycerides and VLDL levels in the present study are in agreement with the report by Vierhapper et al., (2000) that hypothyroid cases showed alteration in pattern of triglyceride kinetics as removal of both endogenous and exogenous triglycerides is markedly reduced and this change seems to account for the hypertriglyceridemia associated with thyroid hypofunction. There is also decrease in plasma post heparin lipolytic activity in hypothyroid state accounting for the raised triglyceride levels (Nikkila and Kekki, 1972). The above factors may play some part in raising the level of serum triglycerides in cases of subclinical hypothyroidism (Miura et al., 1994).

CONCLUSION

So it can be concluded that patients with thyroid disorder did have a marked impact on lipids fractions like total cholesterol, LDL-C, HDL-C levels, triglyceride and VLDL-C in patients with subclinical hypothyroidism suggested that subclinical hypothyroidism might be associated with increased risk of some amount of cardiovascular risk that could be improved on giving L-thyroxine.

REFERENCES

Table 1: Age wise distribution of case and control group

<table>
<thead>
<tr>
<th>Age (yrs)</th>
<th>Cases</th>
<th>Control</th>
<th>Chi-square test</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Percentage</td>
<td>Number</td>
<td>Percentage</td>
</tr>
<tr>
<td><30 yrs</td>
<td>11</td>
<td>27.5%</td>
<td>10</td>
<td>25%</td>
</tr>
<tr>
<td>30-45</td>
<td>20</td>
<td>50%</td>
<td>13</td>
<td>32.5%</td>
</tr>
<tr>
<td>46-60</td>
<td>5</td>
<td>12.5%</td>
<td>11</td>
<td>27.5%</td>
</tr>
<tr>
<td>>60 yrs</td>
<td>4</td>
<td>10%</td>
<td>6</td>
<td>15%</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>100%</td>
<td>40</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 2: Mean Thyroid Level of case and control group

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Cases</th>
<th>Control</th>
<th>T</th>
<th>Df</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSH (µIU/ml)</td>
<td>9.423±3.944</td>
<td>2.54±0.8180</td>
<td>10.86</td>
<td>78</td>
<td><0.0001***</td>
</tr>
<tr>
<td>TotalT3 (ng/dl)</td>
<td>123.7±36.12</td>
<td>133.5±22.03</td>
<td>2.226</td>
<td>78</td>
<td>0.0287*</td>
</tr>
<tr>
<td>TotalT4 (µg/dl)</td>
<td>7.106±4.136</td>
<td>9.019±1.527</td>
<td>2.584</td>
<td>78</td>
<td>0.0112*</td>
</tr>
</tbody>
</table>
Table 3: Mean Lipid Parameters (mg/dl) of case and control group

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Cases</th>
<th>Control</th>
<th>T</th>
<th>P- value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum Cholesterol</td>
<td>182.0±38.71</td>
<td>130.4±17.63</td>
<td>7.431</td>
<td><0.0001</td>
</tr>
<tr>
<td>LDL</td>
<td>122.1±23.34</td>
<td>100.6±11.66</td>
<td>4.002</td>
<td>0.0001</td>
</tr>
<tr>
<td>HDL</td>
<td>36.23±5.421</td>
<td>33.10±4.002</td>
<td>2.004</td>
<td>0.0485</td>
</tr>
<tr>
<td>VLDL</td>
<td>24.64±7.013</td>
<td>20.15±3.129</td>
<td>4.397</td>
<td><0.0001</td>
</tr>
<tr>
<td>TG</td>
<td>133.4±41.62</td>
<td>114.2±13.11</td>
<td>4.019</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Table 4: 2D-Echo in case and control group

<table>
<thead>
<tr>
<th>2D-Echo</th>
<th>Cases</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Percentage</td>
</tr>
<tr>
<td>Positive</td>
<td>22</td>
<td>55%</td>
</tr>
<tr>
<td>Negative</td>
<td>18</td>
<td>45%</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>100%</td>
</tr>
</tbody>
</table>